If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10z^2+7z+4=3
We move all terms to the left:
10z^2+7z+4-(3)=0
We add all the numbers together, and all the variables
10z^2+7z+1=0
a = 10; b = 7; c = +1;
Δ = b2-4ac
Δ = 72-4·10·1
Δ = 9
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{9}=3$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(7)-3}{2*10}=\frac{-10}{20} =-1/2 $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(7)+3}{2*10}=\frac{-4}{20} =-1/5 $
| 12-g=-24 | | x=3.14*16*3 | | 3x^2+9=5.4x | | x/3-16=-12 | | 5x-22=-102 | | 3.4+x=-5.6 | | 6x+7-2x=3=5x-9 | | 5.5+15x=45 | | 4.2x+3=11.92 | | 7(p-1)=98 | | -3(y-4)=5y+44 | | -3v-30=-5(v+8) | | 9(w-4)=-7w+44 | | -4(k+3)=-4 | | x+1/9=-1/9 | | 61+(5x-3)=180 | | 8^x-5=32 | | 1/5x+x=240 | | 2e-4=-2 | | 5+26=-13+2y | | 8(-1+2b)=0 | | 4x-3+2x+23-x=6x+19 | | 12(5g-3)=4 | | 5k-1=4-3k | | 6x+6=2x-26 | | 11x-6=120 | | 3x^2+42x=-171 | | 6x+15=24x-30+4x | | 3x^2+25=97 | | -3x-134=140 | | m-5/5=2 | | -4x=16x^2+16 |